Tag
NLP
- Nov 19, 2025
Demystifying Agentic Search Engines
Agentic search engines—such as Google AI Mode, Perplexity, Bing Copilot, ChatGPT Search no longer means “type keywords, get ten blue links.” AI Search experience capable of understanding tasks, planning queries, calling tools, and synthesizing results and deliver a conversational response with inline citations, minimizing user effort. In this post, I’ll walk through the stack from bottom to top, how it crawls and indexes pages, how it retrieves and ranks information, and how recent features like RAG and Agentic search build upon these foundations.
#NLP#AI#System Design#DL - Jul 9, 2025
各领域的深度学习模型
本文简要总结了深度学习在NLP、计算机视觉、信息检索和推荐系统四大主流领域的演进脉络:从早期RNN、CNN等专用模型,到Transformer全面主导,再到如今BERT/GPT、ViT、Diffusion等预训练大模型横扫各领域。核心趋势是预训练+生成式范式取代传统任务特定模型,统一建模与生成式架构正在加速推动各领域融合与新一轮创新。
#模型#AI#NLP#CV - Oct 21, 2024
NLP技术与应用:从语言理解到智能生成
#NLP#AI - May 29, 2024
Retrieval-Augmented Generation (RAG)
Retrieval-Augmented Generation (RAG) combines large language models with external knowledge retrieval to produce more accurate and grounded responses. The post explains why RAG was introduced, explores its key use cases and real-world applications, and discusses challenges and considerations that impact performance in practical deployments.
#LLM#AI#GenAI#NLP - Mar 18, 2024
对话系统:从人机交流走向理解与互动
本文探讨了机器学习如何推动人与机器的自然交流,从早期的对话系统到如今能够理解意图、执行任务的智能助理。近年来的趋势是向LLM + Agent 化对话系统演进,LLM 可嵌入架构中各核心模块,增强系统的理解、生成与决策能力。最终,通过引入智能代理机制,让对话系统从“能说”进一步迈向“能做”。
#NLP#AI#LLM#ML